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where dUx/p p denotes the Frechet derivative with respect to ux/p. The pur-
pose of this paper is to show that an approximation (renormalization)
to the complete sum of the Chapman-Enskog expansion for the stress
of a gas of Maxwell molecules has a remarkably similar form, i.e.,
C r n=-Lp + d(vx/p) p where

KEY WORDS: Chapman-Enskog expansion; Burnett equation; Boltzmann
equation; stability.

INTRODUCTION

The usual Navier-Stokes relation for the stress in one-dimensional motion
of a monatomic gas is given by c= —p + 4/3uux or in variational form
c=-P + d(ux/P) p

This paper continues the author's study of procedures for rewriting the well-
known Chapman-Enskog expansion used in the kinetic theory of gases. The
usual Chapman-Enskog expansion, when used in isothermal fluid motion, will
introduce nonlinear instability at super-Burnett order O(E3) truncation. The
procedure given here eliminates the truncation instability and produces the
desired dissipation inequality.
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p is a functional of p, Vx/p, and px/p
2, and dvx/p p is its Frechet derivative

with respect to Vx/p. In addition the renormalized stress yields a natural
"energy" dissipation relation and the viscous contribution to the stress
exhibits for certain allowable parameter values a finite high frequency
(large gradient) limit which I call Rosenau saturation [R1, R2, KR]. The
importance of Rosenau saturation is that it provides a bounded viscous
dissipation and is a closer approximation to the true Boltzmann equation
in regions of large fluid gradients.

This work continues my investigation into the Chapman-Enskog
expansion for the Boltzmann equation [Ce, Ch, G, TM, W]. The impor-
tance of the topic is well-known: the Chapman-Enskog expansion for the
stress and heat flux serves as a formal bridge between the kinetic and
continuum level descriptions of fluid flow. It provides a mechanism for
describing the transition between the two levels which is crucial for flows
that need to be described on a large range of macroscopic length and time
scales.

It was first noted by Bobylev [B1] for Maxwell molecules and
Luk'shin [L2-L3] for hard spheres and later in [F1, F2, Z] that the
Chapman-Enskog approach fails when the expansion is truncated beyond
some critical order: the truncated expansions yield the rest state of a
monatomic gas governed by the Burnett O(E2) and super-Burnett O(E3)
truncations linear unstable. (Here e>0 is the Knudsen number which play
the role of the expansion parameter.) The instability is not a failure of the
Chapman-Enskog expansion, it is only a failure of truncation. It was this
failure in the truncations for the linearized theory that led Rosenau [ R1 ]
to give both a fundamental explanation of the instability phenomenon and
suggest a method for rewriting the truncations and summing the entire
Chapman-Enskog expansion for the Boltzmann equation. (A similar idea
to Rosenau's was presented by Luk'shin [L1-L3] but Luk'shin did not
attempt to sum the series to obtain an everywhere valid representation for
the stress and heat flux.)

Gorban and Karlin [GK1] apparently unaware of Rosenau's paper
suggested a summation technique similar to Rosenau's for the linearized
Chapman-Enskog expansion. In [GK2] Gorban and Karlin continued
their investigation and presented a framework for dealing with the com-
pletely nonlinear theory. That approach leads to similar but not identical
results to the direct method given here and in [S]. For example, Gorban
and Karlin's renormalized stress is not everywhere defined: it blows up at
certain distinguished values of the velocity gradient.

In my earlier paper [S] I reconsidered Rosenau's program in a fully
nonlinear context. In particular, I showed that the Chapman-Enskog
expansion to super-Burnett order O(e3) governing the temperature of a
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monatomic gas of Maxwellian molecules (i.e., r - 5 attractive form between
two molecules) is given by
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Here T=T(x,t) is the variable temperature and a body force has been
imposed to keep the density p = p0 > 0 a constant and the velocity u = 0. In
(0.1) the nonlinear 813(Tx

3/T2) is stabilizing while the linear 157T X X X is
destabilizing. I showed in [S] that the destabilizing term 157TX X X should
be thought of as the second term in an asymptotic expansion for the resol-
vent of the operator

to both sides of (0.1) and retention of terms to O(e3) was shown to yield
the total generalized entropy

In particular applying the operator

increasing when n = (Cv log T for L1<L<L2,L1 = 1.06447..., L2 =
16.581195.... This showed the appropriate way to view the super-Burnett
truncation for the heat conduction equation (0.1) is obtained after applica-
tion of M[F; T] to both sides of (0.1), and deletion of O(e4) terms, i.e.,

or in nonlocal form



with Q given by
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Here G is the Green's function associated with the positive definite self-
adjoint (on the weighted space L 2 ( - i , i) with weight T-3) M [ F ] .

In this paper I consider the problem complimentary to the heat
conduction equation, i.e., I give a renormalization of the equations for
isothermal fluid flow of a monatomic gas of Maxwellian molecules

which forces the fluid motion to do positive mechanical work. The tem-
perature T is constant and the viscous stress is again given by the
Chapman-Enskog expansion to super-Burnett order.

Remarkably the problem for the purely mechanical problem (0.5),
(0.6) is also complimentary to the heat conduction problem in a surprising
mathematical nature. In (0.1) the terms 813(Tx

3/T2) and 157T X X X were a
nonlinear stabilizing term and a linear destabilizing term respectively. In
(0.6) similar terms arise with T replaced by the velocity u in cvis. However,
the roles are reversed: the nonlinear term is destabilizing and the linear
term is stabilizing. Hence a related though different renormalization proce-
dure must be invoked for the mechanical problem (0.5), (0.6).

As noted above I will show that the renormalization procedure leads
to an exceptionally simple form for the renormalized isothermal stress:

where



and so ||u(t)|| < ||u(0)||. On the other hand (1+£ 2 u x
2 ) - 1 / 2 has the power

series representation

The rest state u = 0 is a solution. It is also a stable solution. For if we
denote by ( , ) the L2( -i,i) inner product and ||.|| the associated
L2( — i;i) norm we see

p is a functional of p, Vx/p, and px/p
2, and dvx/p p is its Frechet derivative

with respect to Vx/p. A reasonable conjecture is that this stabilizing,
destabilizing coupling of linear and nonlinear terms will continue
throughout the Chapman-Enskog expansion and methods given here and
in [S] will produce stable truncations at every order and produce good
approximations to the sum of the entire series for the viscous stress and
heat conduction.

The paper has two sections after this one. In Section 1 I give an example
which illustrates how a nonlinear viscous stress will yield truncation
instability. The simple example captures the essence of the renormalization
without extraneous technical difficulties. The example is similar to one
given by Rosenau in [R2] as a model of a very weak viscous smoothing
mechanism for interfaces. In Section 2 I consider the purely mechanical
problem of one-dimensional isothermal steady fluid flow where the viscous
stress is given by the Chapman-Enskog expansion for the Boltzmann equation
with Maxwellian molecules. I show how the method given in Example 1,
Section 1, will yield a renormalization of the viscous stress which does
mechanical work.

1. AN ELEMENTARY EXAMPLE

An example will provide a simple way of visualizing instabilities in the
Chapman-Enskog expansion.

Example 1. Consider the evolution equation

Renormalization of Chapman-Enskog Expansion 289



290

valid when | EUX |< 1. If we substitute the power series expansion into the
evolution equation (1.1) we obtain formally

Slemrod

which is the heat equation and u = 0 is again stable. However, for

If we wish to study truncations of (1.3) we note for

Hence we see

Here the first and third terms on the right side of (1.5) are stabilizing but
the second is destabilizing for B<1/2 and stability of the rest state cannot be
determined without additional information. (This is because the estimate

on the destabilizing term cannot be compensated by the stabilizing terms
without the imposition of small initial data for |Eux|.)

Hence the reason for the stability-instability paradox is clear: the
restriction of smallness of |Eux| must be enforced in (1.5) since that was a
requirement for the convergence of the original geometric series.

Unfortunately in physical examples we do not have the luxury of
knowing the original evolution equation to begin with. We can expect there
is one, say similar to (1.1) which is everywhere valid producing a globally
stable rest state, but we can only see its behavior via the dynamics of an
asymptotic expansion similar to (1.3) which has a more limited range of
validity and whose truncations seem to yield paradoxical stability information.

If we continue the expansion on the right-hand side of (1.4) we will
obtain an equation of the form

where q has the form of a Chapman-Enskog asymptotic expansion



and it does not lead to a stable rest state u = 0 at the O(E 3) truncation.
However, it possesses an N = 3 renormalization expressed in (1 .2 )

for u constant. In the case p = 0, k —> i the renormalized expansion exhibits
Rosenau saturation. If a renormalized expansion is O(ek) as k -> 0, k -> i
then its response at high and low frequency imput is similar to the usual
linear viscous relation q = Eux.

In the above example the original Chapman-Enskog expansion (1.4)
can be seen to have the form

where qn are homogeneous of degree n.
Finally, a renormalization is said to be O((ek)p) as k -0, k - >i if

is called the order N truncation of the Chapman-Enskog expansion.
A renormalization of the Nth order truncation of the Chapman-Enskog
expansion (1.6) is an asymptotic expansion

for L e C.
Following the nomenclature of [S] the finite sum

and qn(u, . . . ,u ( n )) , u(n) = dxu, qn is homogeneous of degree n:
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which when written in asymptotic expansion as e ->0 agrees with the O(e3)
truncation (1.7) above. Furthermore, the N = 3 renormalization (1.8) is
O(ek) as k -> 0 and O(e2k2) as k -> i.

A little inspection shows that the renormalization is not unique
however. The choice

will work just as well as long as 0 < y<1/2 and ny >1/2. So our original choice
y=1/2,n = 1 is the one that leads to smallest choice of n and the smallest
exponent p, q = O((eK)p), as K -> i. That is the choice y =1/2 is the one least
effected by high frequency imput.

How should one then approach (1.3) to obtain the "hidden" evolution
equation? Of course, the answer in this simple example is to sum the series
(1.2) and then continue it analytically to all nonzero values of EUX to
recover (1.1) [CBV]. (A related analytic continuation idea was used by
Bobylev in [B2].)
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2. ISOTHERMAL MOTION OF A MONATOMIC GAS

In this section we will compute the renormalized viscous stress for a
monatomic gas of Maxwellian molecules. First we note that the Chapman-
Enskog expansion in one space dimension for the stress a and heat flux q
of a monatomic gas of Maxwellian molecules are given by the expansions
(to super-Burnett order N = 3 order [F1, F2, Fo, Z])
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Here u=eT, K = K0u are the viscosity and coefficient of thermal conduc-
tivity respectively, £ is the Knudsen number, T is the temperature, p is the
density, u is the velocity, p is the pressure =RpT, R is a gas constant,
K0 = 3/2cp where cp is the specific heat at constant pressure and cp = 5/2R.

We now consider the usual balance laws of mass, momentum, and
energy in one space dimension where a heat source is imposed to keep the
flow isothermal (T= positive constant). In this case the relevant balance
laws are

where from the Chapman-Enskog expansion we have

Notice the destabilizing 16/27u3
x term and stabilizing 2/9RTuxxx appear in (2.3)

just as in Example 1. Before providing the renormalization procedure let us
note the consequences of the use of the classical expansion.
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If we use only the O ( u ) term in cuis (2.1), (2.2) yields the compressible
Navier-Stokes equations
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Multiplication of the second equation by u and integration from — i to
+ i in x yields the desired energy dissipation equation

indicating the viscosity is dissipating mechanical energy.
Next consider the viscous stress cvis evaluated up to the O ( u 2 ) term. This

yields the Burnett correction to the compressible Navier-Stokes equations

A naive hope would be that multiplication of the second term in the
above Burnett correction by u would also yield a dissipation relation
similar to the one obtained for the compressible Navier-Stokes equation:
velocity gradient terms in cvis should dissipate and the density dependent
term (-4/3(RT/p) pxx + 4 / 3 ( R T / p 2 ) p2

x)x which when multiplied by u should
become the time rate of change of a capillarity energy term. Unfortunately,
this is not the case: the 40/27ux

2 introduces an indeterminent form and the
density dependent term does indeed produce a rate term, but as we shall
see it is of a surprising non-local velocity form.

If we continue onto the O ( u 3 ) super-Burnett truncation of cvis we
introduce the destabilizing 16/27u3

x term and ability to obtain an analogue to
the classical Navier-Stokes dissipation relation seems remote. Hence moti-
vated by Example 1 we introduce the following renormalization procedure.

The first step in the renormalization procedure is to use the identity
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to rewrite

Next use the identity

to eliminate the 42/9 (u x p x x RT/p) term in cvis:

Now define the linear operator L:

A simple computation shows

where ( , ) denotes the L 2 ( - i , i ) inner product, i.e. L is self-adjoint on
the Sobolev space H2( —i,i) with respect to the L2( — i,i) inner
product with weight p.
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which is the crucial observation in renormalizing the u2 Burnett order term
in cvis.

Hence we can write

Since p = RpT, we note

Now following the idea of Rosenau [ R2 ] and the spirit of Example 1
we introduce the function

From the definition of F we see

where y is an as yet undetermined constant. Hence



and to force the constant to be zero we define V to be that solution of
L( V x / p ) = ux/p which satisfies V-> 0 as \x\ -> i.

We note a can be expressed in terms of Vx instead of ux:

In particular if we assume u -> 0 as \x\ ->i we can integrate to find

(Since L is coercive from H2( — i,i) to L2( — i,i), L-1 exists as a
bounded linear operator from L2( — i,i) onto H2( — i,i).) Then we see

The next step is perhaps unmotivated at this juncture but will become
clear shortly. Define

and a can be written as
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and

We can compute d ( V x / p ) p explicitly using the definition of F:

we have the Frechet derivative of p with respect to the variation in Vx/p
is

Since the Euler-Lagrange equation associated with this functional p is

Notice now we have set F(p, Vx/p, ( 1 / p ) ( V x / p ) x , p x /p 2 ) = F and the
term ( 1 / p ) ( V x / p ) x F - y has the coefficient 2 arising from the substitution
ux/p = L ( V x / p ) in the 4 /3uu x F - y term.

The right-hand side of (2.4) can be expressed in a remarkably simple
form. Consider the Frechet derivative with respect to variation in (Vx/p) of
the functional
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We now compare the right-hand sides of (2.4) and (2.5) and make the
identifications

It then follows from that the isothermal stress has the simple representation

where

Based on this computation we take the renormalized stress crn to be

If we trace our steps backwards starting with crn we see we recover the
original Chapman-Enskog expansion to terms of order u4. Hence crn is
truly an N = 3 renormalization of the Chapman-Enskog expansion of a gas
of Maxwellian molecules for constant temperature.

We next will show that the evolution of the isothermal flow described
by the renormalized stress crn yields energy dissipation for certain choices
of the as yet free parameters y, v2. To do this we will need some simple
integral identities.

First, we observe that since L is self-adjoint onto H2( —i,i) with
respect to the L2( —i,i) inner product with weight p, then trivially L-1

is self-adjoint on L2( — i,i) with weight p. Hence

since V-> 0 as \x\ -> i.
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Next observe that
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and so

If we combine (2.7) and (2.8) we find

which by the classical transport relation

shows

If we return to our balance laws of mass and momentum with stress
given by crn we see

and hence



Now substitute

Thus to obtain energy decay and when u, p ->0 as |x| ->i we need
only find conditions to guarantee ( Vx, d( vx / p ) p) > 0.

If we compute ( Vx, d ( V x / p ) p ) we find

Note that is precisely at this point that the definition of V is crucial:
since (ux, L - 1 d ( v x / p ) p ) = (p(ux/p), L - 1 d ( V x / p ) p ) = ( p L - 1 ( u x / p ) , d ( V x / p ) p ) =
( Vx, d(vx/p)p) we have derived the energy identity

and hence taking the L2( — i,i) inner product of with ux and using (2.9)
we see

where we assume p and hence p go to zero as \x\ ->i. Now we apply the
linear operator L-1 to both sides of the above equation to obtain
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are positive definite. Substitution of the earlier obtained values for V1, v3,
v4, v5, v6, v7 yields C and D positive definite when

On the other hand F is a quadratic form and F and hence F are
positive definite when the matrices

while the requirement det B > 0 is equivalent to

and positive definite. Since v1 = 2 / 3 ( 1 — y ) the requirement det A>0 is
equivalent to

Hence ( Vx, d ( V x / p ) p ) is non-negative if the matrices A, B given by

into (2.12) to obtain
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is O(ek) as k->0 and O ( ( e k ) 3 - 4 y ) as K->i. Since -1<3-4y<
3 — 4ycrit < 101/115 the renormalized viscous stress has sublinear growth in ek at
high frequency imput. It also shows that the renormalization process is a
very mild regularization procedure in that its effect at large k is even
weaker than the classical cvis = 4/3uux relation. This suggests that renormal-
ized equations possess a much weaker diffusion mechanism than classical
compressible Navier-Stokes equations and is more realistic hydrodynamic
model in that it will allow less penalization for the formation of inhomoge-
neities (shocks), again consistent with fundamental idea of Rosenau in
[R2, KR]. Notice in the allowable case y = 3/4 the viscous stress exhibits
Rosenau saturation and viscous stress has a finite high frequency limit.

In summary the isothermal motion governed by the balance laws of
mass and momentum

is non-increasing, in time. This is the generalization of the classical Navier-
Stokes O(u) energy dissipation.

This result is quite striking in that it delivers a critical exponent ycrit

for the expression for a. It implies the renormalized stress has a singular
diffusive component and the singularity must lie in the regime (ycrit, 1).

As the renormalization maps the non-local Boltzmann equation to a
new non-local set of equations it unfortunately sheds no light on local
boundary conditions for the new system.

Finally, as in Example 1 set px /p
2 = ikeikx, Vx /p = ikeikx, ( V x / p ) x =

(ik)2 eikx and we see the renormalized viscous stress

Since we need y, v2 to satisfy (2.13)-(2.16) we require that y, v2 satisfy
(2.13), (2.14).

Hence when (2.14) and (2.15) are satisfied the "energy"

and
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non-increasing in time and cvis rn.= crn + Lp is O(ek) as k->0 and
O ( ( E k ) 3 - 4 y ) as k->i where 1 > y>ycrit = 61/115, v2>233/24y, -1<
3-4y<101/115.
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